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Abstract

A software architecture is presented, which introduces several agents which focus on different as-
pects of path planning for multiple autonomous unmanned aerial vehicles (UAV’s) that are searching
an uncertain and threatening environment for targets. One agent models threats in the environment.
Another develops a model of the environment that allows targets to be defined by individual probability
distribution. Lastly, an agent is presented that utilizes the information from the other agents to generate
a near optimal path plan using a Dynamic Programming algorithm.

1 Introduction

Unmanned aerial vehicles (UAV’s), such as the Predator [1], have been receiving an increasing amount of
attention recently. The versatility of these craft, and their relative inexpensiveness, make them appealing
for use in many areas where the use of manned aircraft would be too dangerous to the pilot or too costly.
However, the Predator, while unmanned, still requires a substantial amount of manpower to operate, as it
is still piloted, albeit remotely from a ground station. It is desired, then, that future UAV’s, similar to the
Boeing X-45A [2], have higher levels of autonomy.

However, directing autonomous agents such as these to behave in an “intelligent” manner constitutes
a very interesting and challenging problem, especially in cases where there exist many constraints on the
control of the agents. This is particularly true in the case of multiple autonomous unmanned aerial vehicles
searching for targets in an uncertain environment. While the problem is a type of “search” problem, there
are many factors present that set this problem apart from many of the classical search problems, such as
those discussed in [6]. Even some standard methods of search become less desirable in the presence of a
priori information and multiple vehicles, where the concept of cooperation among the vehicles is brought to
the forefront.

The great bulk of the work in cooperative path planning and decision is in the area of “point-to-point”
paths, where the vehicles have a given destination or set of destinations to travel to, as in (7] and [8]. While
this area has produced many good results, the methods utilized are not really suitable to search, where a
vehicle’s final destination is secondary to the exact route it takes (and the targets discovered thereon.) The
first step in the cooperative search path planning decision process is to model the environment in a suitable
manner for autonomous route planning. Some of these methods have been proposed recently in [5], [9], and
in previous work on this topic that has been evolving in several other papers by the authors of this work:
{3] and [4]. However, this paper differs from the previous work by creating an formal software architecture.

*This work was supported by DARPA under the MICA (Mixed Initiative Control of Automa-teams) project.
tflintmd@email.uc.edu

femmanuelGececs.uc.edu

Spolycarpou@uc.edu
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Figure 1: The architecture of the CPPS Apent,

Within this architecture there are now addjtional elements which have been added to the previous stochastie
modeling and decision process formulation for the cooperative UAV search problem. This includes remaoving
the assumption that all of the targets’ distributions are completely independent and identically distrilbuted.
Also, threats are explicitly represented in the model of the enviromment and in the planning algorithn.
Additionally, a mare refined definition of gain is proposed.

Figure 1 shows the internal architecture of the CPPS module. The hoxes show the boundaries of structures
within the CPPS module, with the arrows showing the interfaces and the flow of inforination involved. The
blue box shows the boundaries of the CPPS module. The boxes with green backgrounds show information
bases, which passively store information. The white boxes show the agents, who are the actors iu the module,
and are described in the following sections. These agents utilize the information from the information bases
and coordinate with one another to perform the functions of the module. The Situation Model that exists
outside the medule acts as a central information hase and as the gateway to the human users, the simulator,
and the other automated agents and reasoners that handle higher level tasks.

Section 2 is a discussion of the Search Map Handler, an agent which lhandles information about the
probahility of discovering targets in vartous regions of the environment. The Threat Map Handler, the agent
that deals with threats, i.e. the danger posed to a vehicle travelling in various parts of the environment, is
discussed in section 3. The next section, 4. is concerned with the keystone agent: the Planning Agent, which
takes the information from the other agents and uses it to produce the best path available to the vehicle.
Section 5 gives some very basic simulation results, and Section 6 gives conclusions and continuing work.

2 The Search Map Handler

For this analysis, any object for which the vehicles are scarching s called a target, regardless of what other
qualities the target may have (threat value, priority, etc). A target which is suspected to exist in the
environuent but has not been detected is called “suspected.” A target that a vehicle detects, hut does
not locate with certainty is called “detected.”. It is assumed that with each detected tlarget there exists
an uncertainty region of variable size that the target is known to be within, An uncertainty region which
covers a lot of area means that the targel's position is not known with much certainty. It is also assumed
that there is some threshold, such that if this area is sufficiently small, the targel will be considered as fully
“found,” and the vehicles will no longer be trying to gain more certainty about its location, and it ceases to
be a candidate target for the search. Of course, if the target is destroyed, then it would also cease to be a
candidate for the search.

B Y



2.1 Search Gain Defined

The Search Map Handler should produce a value that represents how valuable certain areas of the envi-
ronment are to search. This value is termed “search gain.” The search gain function should maximize the
number of real targets (as opposed to false targets) detected or found. However, as the location and even the
existence of the targets are based on random values, the expected number of targets detected will have to
be maximized instead. In order to do this, the vehicle will have to choose which cells of the map to search.
To find the maximum number of targets, a vehicle will want to search cells that have the highest number of
expected targets in them. This expectation is based on the number of possible targets in the cell and three
other factors. For a target i, let

e F! be the event that target i is detected in cell x.
o T be the event that target 1 actually is in cell x.

e E' be the event that target i exists (is a real target).
In order for a target to be within a cell (event T},) the target must first exist (event E*), thus T} C E'.
Also, since if a target exists, it must be somewhere,
E=JTi 1)
z

The expected probability of discovering target i in cell z is determined by the probability of events Fi,
T:, and E! all occurring (i.e. P(FiNT:N E)). But, since T} C Ef, P(FiNT.N E') = P(F: N T%), which
can be written as

P(F; nT}) = P(F|T;)P(T;) 2
by conditional probability. Since event E* completely includes event T%,
P(T;) = P(T; N E') = P(T;|E)P(E"). )
Putting these two equations together,
P(F;NT}) = P(F|T;) P(T;|E")P(E"). “4)

P(F|T?) is the probability that a target is detected by a sensor search of cell = given that the target
is in cell . This is defined as the sensor efficiency, p, which for this work is assumed to be the same, and
constant, for all cells and targets and to be available a priori (e.g. as a function of the sensor type.) Also,
P(E"), the probability that target i is a real target, is labeled as ¢*. Lastly, P(T:|E*) is the probability
that, given that a target i is a real target, it is in a particular cell z. This can be found from the given
distribution (uniform over the uncertainty area by default) of the target or from a priori information. This
is not assumed to be the same for every target.

Let @} be a random variable such that

g=d 1 if F1, T}, and E' all occur. ®)
71 0 : otherwise.

This means that @ = 1 if target i is detected in cell x and is 0 otherwise. Define the set of all possible
targets in a cell z as G,. Let o be a function that takes as an argument a cell (or a collection of cells), and
returns the search gain for searching that cell (or the sum of the search gains for searching each individual
cell in that collection of cells.) The search gain is then calculated by taking the expectation for finding
targets in a cell z over {&}};ec,, as shown here:

a(x) = E{# Targets detected in z}
= ) E{ai}
i€G,
= Y {P(FinT})}
1€G,

= Y {*P(TIIEY)}. (6)

1€G,




2.2 The Search Map

It is possible to efficiently store the values necessary to calculate the search gain from Eq. 6. First, the map
is defined as a bounded rectangular area divided into discrete, equal-area cells. For each cell of the map
there exists an array (or vector) that stores several values. The first value in the array is the product of the
vehicle’s search: a value that represents the reduction in uncertainty about what is in the cell because of the
action of the vehicles, Let v, the number of times a cell has been searched, represent this value for cell «.

The second and subsequent values in the array are calculated based on information about particular
targets that have some probability of being located in the cell. For each target, this can be found by taking
the area in which that target may be found (e.g. the uncertainty region), and determining which of the map
cells are within this area. Then, a value known as the relative probability value (C?) for target i in cell = is
calculated, using the distribution that is given for that target. If no information is available a priori to create
this distribution, it is assumed to be uniformly distributed over the whole search area. Each cell of the map
holds an array (of the same size as the number of elements of G;) of these C% values for each target. Thus
the total size of the array for each cell = is the number of targets that may be in the cell plus one (for v,).

Note that when the probability value of one cell for a specific target changes, the value of every other
cell where that target is possible would also change. Updating several cells any time a single one changes is
not very efficient, especially when there are a large number of cells. Thus the relative probability values are
defined such that only the value of the cell that is searched is changed; the others do not change.

How these relative probability values can then be used to calculate the search gain is shown. Let P: be
the probability of target i being in cell = (given that the target exists,) and let N} be the number of cells in
the uncertainty area of the target. So,

) . A Ci
P = P(T|B) = —2=—. (7
221 A:Ci )
Now, A; is a constant value for every cell, so
C:
ey st (8)
E:=l C::
Then letting
; 1
Vie —r 9
251 Ci @
equation 7 simplifies to _ o
Pi=ViCi, (10)

Since V* and ¢* are the same for every cell for a particular i, these values do not need to be stored in the
arrays for the cells of the map. Instead, these values can be stored as a list which records, for each target
i, the ¢* value and V* value for that target. And so, (using Eq. 6 and Eq. 10) the search gain can now be

written as
o(z)= Y {p('ViCi}), (1)
i€G,

where each of these values is available as a priori information (p) or from the search map (¢%,V¥,C%).

2.3 Updating The Search Map

For each target i € G and for all x that are searched by a vehicle at a certain time step (i.e. the cells that
fall within the vehicle’s sensor’s footprint,) there are three (mutually exclusive) things that can occur before
the next time step. They are

e Target not detected.
o Target detected but not found.

o Target detected and fully found, or target destroyed.




2.3.1 Target not Detected

Let F:, be the event that target i is not detected on a search of cell z,. Now, on a search of the cell, either a
target is detected or it is not, so P(F: )+ P(F: ) = 1. This occurs regardless of whether the target actually
exists in the cell or not, so P(Fi |T: )+ P(F: |T:)) = 1. So,

P(F;,|TZ,) = 1 - P(F,,|T2,). (12)

Since P(F%,|T%,) = p,
P(F;IT;))=Q1~p). (13)
Now, when a cell is searched and target i not detected, the map would like to record the updated
probability that target ¢ is in that cell (i.e. that it is really still there.) Assuming that the probability of
existence of the target does not change due to this sensor sweep, the updated probability that the target is
located in the cell after the search (given that the target exists) is given by conditional probability as

P((F;, N EYIT; ) P(T3,)

P(T:IKF:; nE)) = P(F!i ﬁEi)

(14)

The fact that T} C E* means that if T:, is given then event E* is given as well. This and Eq. 3 let Eq. 14

be written as . L i

P(F;,|T3,)P(T;, |E*) P(EY)
P(F} |E)P(E)

The event whose probability is given by P(F: |E*) occurs under two conditions. The first is if the target
is not located in the cell, an event with probability 1 — P(T; |E*). The second is if the target is in the cell,
but that it was not detected, an event with probability P(F: |T: )P(Ti |E*). Since these two events are
mutually exclusive, the probabilities are additive. Using Eq. 13, this sum can be written as

EY) = (15)

P(T;, |F;

'R

P(F,|E') = 1-P(T;|E')+ (1 - p)P(T;,|E')
= 1-pP(T%|EY). (16)
Thus, Eq. 15 becomes o
P(T: |Fi E*) = (- pP(T, |E) (17

T— pPE, )

Note that this update equation is valid only for the cell x, referred to by event F";;l, even though the
probabilities of the target being located in all of the other cells on the map are also changed. Let z be an
arbitrary cell that is not referred to by event Fj . The post priori (after event F: ) probability of this cell
(again, given that target i exists) is given by

P(F;, |T;,)P(T;, | EY)
P(F},|EY)

P(T;,|F;,, EY) = (18)
It is assumed for the purposes of this paper that the sensor will not misplace the target if it is detected, so
if the target is in cell z2 it will not be detected in cell £; and the probability P(F;'1|T,‘;2) = 1. Using this
and Eq. 16, Eq. 18 becomes o
P(Tg,|E*)
1= pP(T% 1B

The map handler now wishes to record the new (post priori) probability values on the map. However,
the map does not store the probability (P: ) values directly. Instead, the relative probability values (C: )
are stored. Let z; be the cell that was searched and is being updated, and z2 be any other arbitrary cell
with C_ # 0. To simplify the notation somewhat, a prime ( ’ ) is used to represent a post priori value,
(ie. Pi ' = P(T: |Fi ,E') for n = {1,2}.) Now, the relative probability values are defined so that

P(T,,|F;,,E") = (19)

i i
C., P,

oL "B (0)




and ,

1

: !
T
C:,

P;; ]
=2 (1)

3

ag.

e

: !
However, C, = C;

z3?

since only C;';,l was searched. Using Eq. 17 and Eq. 19,

G, _F _(-nP, 22)
L = =L = - .
C;?a P;ta P”?
Now, using equation 20, )
Cin (l _ p)Cil
_t = T 23
cr, o (23)
Therefore, ., '
¢ = (1-p)Ci,. (24)

So for the case where a cell is searched and a target is not detected, use Eq. 24 to update the value of the
array for cell z for that target. No other cell value is changed, but the value of V* must also be updated.
Since the changes to the map are made incrementally and one cell at a time, this allows the value of Vi to
be changed in the same manner, so that a running value can be easily maintained. Now,

1

Vi= : 25
Ci+...+Cy +...+ Cy, (25)

It is desired that the C,, term in the denominator be updated with the new value C;'l'. Thus, V* can be

updated (to V') by using
; 1
v = : —. (26)
'\}7 + (C;::, - C;?n)

2.3.2 Target Detected

If a target i is detected, then remove all previous entries for that target (i.e. all the C: values) from the
arrays of all of the cells. Now, the C: values must be generated using the new target information based on
the new distribution that is available because the target was detected. Then store this information in the
proper arrays of the cells of the map, making sure to record the ¢* value for that target also. Next, the Ct
values must be updated to account for any searching in the cells that has already occurred previously. For
each cell in the area of the new distribution of that target, apply equations 24 to the map values a number
of times equal to the value of v, for that cell. The value of V* is also calculated and stored.

2.3.3 Target Found / Destroyed

This requires the removal of the target from the map entirely, since the target is no longer a candidate for
search, either because it does not exist anymore, or because its location is known with enough certainty. In
this case, remove it from the array of possible targets for every cell. Its value will no longer be used when
calculating the number of (uncertain) targets expected to be found in a search of any particular cell.

3 The Threat Map Handler

This section describes how threats are modeled in a form that can be incorporated efficiently by the Threat
Map Handler and stored by the Threat Map Information Base.

The level of danger to a flying UAV may depend on several factors, which include any one or several
threats from opposing forces, including SAM sites or random ground fire, or the terrain itself in the form of
hills, mountains, etc. Since several of these factors have a direct relationship to altitude, this must also be
explicitly accounted for.




Altitude

Distance from threat

Figure 2: A siplified threat profile.

Let ¢, be the altitude of the UAV. Let a, be the altitude of the greund or some other terrain feature
into which the UAV could crash if they are at the sanie altitude. Thus, the probability of heing destroyed
by the terrain (D) is

et
| Cp— il
This is true anywhere in the environment, but since a, can vary in diflerent regions of the environment, a
map must record the value for ¢, in different regions of the enviromnent. A two dimensional map, like the
search map, will work. Also, like the scarch map, this terrain map is divided into a grid of equal sized cells,
Lthe size of which can be adjusted from run to run and does not necessarily have to he correlated with the
size of Lhe cells for the search map.

There is assumed to be an altitude (a;) above which the vehicle 15 sale from ground fire, hut below which

it is threatencd. Let Dy be the probability of being destroved by ground fire. This value is given as:

0 i, > a .
Dy :{ r ol.her\'.'{.-;e (28)
The value of F' € [0,1] is asswmed for this paper to be a constant value over the entire environinent.

Let r! be the distance from the point directly below the UAV (at 0 altilude) Lo threat 2. This is a function
of the x and y locations of the velicle (r,, ), and ix caleulated from the threat location (=, y'). Let rifay)
be the mininmn safe distance from the threat for a vehicle at altitude e,, which must be calculated using,
the threat range profile for threat i. The threat range profile is assumed to be known a pricri and te be look
something like that shown in Fig. 2,

Fig. 2 shows several key values of the profile. The distance ry is the largest distance at which the SAM
can hit a vehicle at 0 altitude. The distance r,q. 35 the farthest away the SAM site can fire. The altitude
Umae 5 the lighest alticude that a vehicle can be fired npon by the SAM site. The altitnde a,,, is the



value above which altitude does not change the threat range (until amq. is reached). It is assumed that the
minimum altitude is 0, and that the minimum safe distance boundary can be given as a line. Thus,

0 Ay > Gmezx
r:(au) = T'maz Qtop <ay S Qmaz (29)
_a"(rmax - 7'0) + 7o 0 < ay < @top

Geop

Let Di be the probability of being destroyed by threat i. This is given by

i __ 0 rlil > r:(au)
D, = { T otherwise (30)

The value of T# € (0,1] for threat i is assumed for this paper to be a constant for over the whole area covered
by that.

The threat map handler records the location and type of all SAM’s. Then, for a given UAV’s location,
it can calculate the threat level from a SAM to the UAV using the information about the profile for that
type of SAM. Then, to determine the total threat level to a UAV, the map handler calculates the values for
Dy, Dy, and D; for for all threats i = 1,...,n that threaten a vehicle at a given (zy, y.,a,) location using
Eq. 27, Eq. 28, and Eq. 30. The total threat (d) facing a vehicle at that location in the environment can
then be found by:

d=1-[(1- D)1 - Dy)1-D})...(1-D})] (31)

4 The Planning Agent

The Planning Agent takes the information from the other agents and uses it to decide the path that produces
the most expected targets detected over (ideally) the entire lifetime of the vehicle, which is N time steps, or
(non-ideally) a smaller, more feasible, planning horizon, which is defined as q (¢ < N) time steps.

In order for the vehicles to plan their trajectories, they need to know information about the state of the
environment. The true state of the environment, after discretization, is represented by: (1) an information
base like those maintained by the agents, except that it is updated by every vehicle at every time step
(producing an ideal information base); and (2) by the locations and headings of the vehicles. This true state
is denoted by z}. The state, as perceived by an individual vehicle, is denoted as zx. Under ideal conditions,
every vehicle will perceive the state as being the trye state (z} = z,) but in the non-ideal case, each vehicle
may have a different perception based on the information available to it.

The choice of which path to travel for a vehicle at time k is the decision, or control ux, where u; € U,
where U is a set that contains the choices that the vehicle can take (for example: turn 15° left, go straight,
or turn 15° right.) Let J, be defined as the “cost-to-go” function from time step k& to N. Then, the best
path at time step k can be found from utilizing the DP recursion over the planning horizon (ideal) k to N
or (non-ideal) k to k + ¢:

Ji(zr) = ﬂgﬁ({y(lk,uk) + Ji+1(f(Tk,ur)}) (32)

where g(zx,ux) is the one-step gain function. Note that if the expectation of the stochastic elements is
encapsulated and contained within the gain function then this is a deterministic equation, and can be solved
using a shortest-path algorithm.

To ensure cooperation, the other vehicles are modeled as stochastic elements, where a random quantity
w; i8 used to represent the loss in search gain actually received by the vehicle compared to what was
expected when the decision was made because of interference by another vehicle. The vehicles can then use
the expected result of this wy to plan where to go to avoid undue interference.

The one-step gain at each step is then the expected search gain one would get if no interference were
present minus the expected amount of search gain one would lose from another vehicle interfering,

9(zk, uk) = E{o ~ wi} (33)
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This one-step gain is then used in the DP recursion (Equation (32)) to determine the expected optimal path.
The amount of interference a vehicle expects is a function of p, o, and the probability of another vehicle

interfering, which is denoted as ¥. So
E{wi}=po¥ (34)

Adding in the interference calculations, we have
g=E{a’—wk}=a'—po"Il (35)

Where o is the search gain (with no interference,) p is the sensor efficiency, and ¥ is the probability of
interference. This value ¥ € [0,1] provides penalties to the vehicles for searching areas that have some
probability of being searched by another vehicle first. In effect, it forces the vehicles to spread apart. This
is covered in much more detail in [3] and [4].

4.1 Adding Threats into the Planning algorithm

Threats can be incorporated into the decision model by recognizing what happens to a vehicle if it enters a
threatened area: 1.) nothing happens (i.e. the vehicle travels as normal) or 2.) the vehicle is shot down, or
crashes, and is destroyed. There is assumed, for the moment, to be no intermediate states (i.e. no damaged
state.) Having a vehicle destroyed means that the vehicle is no longer available to search for the remainder
of this mission (or any future mission, either.) So, there is now a new state that a vehicle can enter at any
time during the mission: dead. If a vehicle is destroyed at time k, it will move to this state for time step
k + 1 and its one-step gain (gi+;) for this state and for all future states will be 0 (since the vehicle cannot
leave the dead state.) However, any gain it had previously received it will not lose.

Additionally, if the vehicle is destroyed, there is also a cost for not being available to use in future
missions. So, Jy, the final reward at the end of the mission, now has two different values. If a vehicle is

‘destroyed during the mission, Jy should be 0, as this represents that the vehicle cannot provide any more

gain in any future missions. If a vehicle is not shot down, Jy should be X, where X is a positive reward for
not being destroyed, and represents the value of having the vehicle available for future missions.

4.2 Utilizing the Information from the Search and Threat Map Handlers

Continuing with this analysis, we can now write the expected cost-to-go (or reward) for taking an arbitrary

path by expanding the recursion Eq. 32:

E{Ji} = (1 — di)ox — pox Wi +
(1 = dis1)ok+1 — POkt 1 Wi + ... +
(1 = drtq)[Oktq — POk+q¥k+q + X]]]. (36)

Renaming (1 — d;) as s; for arbitrary i, factoring out o, and letting I; = (1 — p¥;), Eq. 36 can be written
as
E{Jx} = sifoxlx + sks1[ok1de4r1 + ... + 8k+q[Oktqlitq + X 37)

which then can be decomposed into succinct time steps by letting

6,' = H 85 (38)
=1
and then noting that now
E{Ji} = lokbklk]) + [ok+10k41Tk41] + . . . + [Okt g0kt qlitq) + Okt X (39)

So all the terms for a certain time step are collected together. Since the one-step gain.at a particular time
step depends only on the current and previous time steps, these can be converted to a cost (distance) and
can be solved as a shortest-path problem like those found in [3] and [4].
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5 Simulation

Results for this work are obtained by using the Boeing Open Experiniental Platform (OEP).

Figure 3 shows a picture of a trial being conducted in the OEP. T'wo teams of velicles are shown, one
ubove the -1 degree latitude line, and one below. The threats, two long range SAMs and two mediumn range
SAMs are shown on the right, with their accompanying cthreat range vings. These rings show the minimurm
safe distance at 5000ft altitude.

Additional simulation studies are underway in order to explore the vehicle's hehiavior and the efficacy of
making tradeoffs in the values used in the algorithm.

6 Conclusions

The architecture of the Cooperative Search Path Planner allows foens on particular aspects of the cooperative
scarch path planning problemn to be refined in an efficient manner. Advances in the sensor model and the
way that information about targets and uncertainty are given and stored are covered by the Search Map
Handler. The level of risk posed to a veliicle by various threats in the environment is maintained by the
Threat Map Handler. Then, the Planning Agent utilizes this information provided hy the other agents in a
Dynamic Programming algorithin to {ind near optimal solutions.

However, there are still many avenues to pursue to refine this work further. The ability to include a
variable value of p in the formuiation allows for multiple types of sensors 1o he incorporated into the model,
Additionally, finding ways of including the effect of removing the assumption that P(F_,_’_JT;I) = 1 allows
for a more robust sensor model, Creating more cornplex threat environmuents is also possible by allowing
Fand T¢ to vary., Alse, of particular interest is the value ¥, which is currently implemented by reducing
the gain seen by a vehicle, but without taking the threats into acconnt. But, with threats, there can be an
additional component that takes into account the fact that other vehicles may be shot down before they can

\J



interfere. This would lessen the amount of penalty to the search gain which forces the vehicles away from
one another when searching critical, but dangerous, areas. Additionally, the presence of targets that may
be detected and require another vehicle to take a second look could eliminate the effect of the interference
in certain cases.
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